Section 4.3

1) Consider the region bounded by the graph of $f(x)=\sqrt[3]{x}$, the x-axis, the y-axis, and the line $x=1$. Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where c_{i} is the right endpoint of the partition given by $c_{i}=\frac{i^{3}}{n^{3}}$, and Δx_{i} is the width of the i th interval.
2) Evaluate the definite integral $\int_{2}^{6} 5 x d x$ using the limit process.
3) Sketch the region corresponding to each definite integral. Then evaluate each integral using a geometric formula.
a) $\int_{3}^{5} 2 d x$
b) $\int_{1}^{4}(x-1) d x$
c) $\int_{0}^{4} \sqrt{16-x^{2}} d x$
4) Find the following:
a) $\int_{\pi / 2}^{\pi / 2} \cos x d x$
b) $\int_{4}^{1}(x-1) d x$
c) $\int_{0}^{2}|x-1| d x$
5) Assuming $\int_{0}^{2} x^{3} d x=4, \int_{0}^{2} 3 x d x=6$, and $\int_{0}^{2} 5 d x=10$, find

$$
\int_{0}^{2}\left(\frac{1}{3} x^{3}+3 x-5\right) d x
$$

